Table II

${ }^{a}$ Letter designations and substituent distribution are consistent in Table I and JI, ${ }^{b}$ Yield based on arylacetyl chloride. ${ }^{c}$ Recrystallized from aqueous acetone, the others from 95% ethanol.

Tabie III
Some Phenylacetic Acid Derivatives
$\mathrm{ArCH}_{2} \mathrm{COX}$

Ar	X	$\begin{gathered} \mathrm{Bp}(\mathrm{~mm}) \text { or } \\ \mathrm{mp}{ }^{\circ} \mathrm{C}^{a} \end{gathered}$	$\begin{gathered} \% \\ \text { yield } \end{gathered}$	Formula	$-\mathrm{C}$	H	$-\mathrm{Fc}$	$\frac{\%}{\mathrm{H}}$
5-Chloro-3.4-dimethoxyphenyl	OH	94-95	$56^{\text {b }}$	$\mathrm{Cl}_{1} \mathrm{H}_{1} \mathrm{ClO}_{4}$	52.07	4.81	52.28	4.97
5-Chloro-3,4-dimethoxyphenyl	OMe	114-115.5 (0.05)	61^{b}	$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClO}_{4}$	54.00	5.36	54.28	5.46
2-Chloro-3,4-dimethoxyphenyl	OH	138-140	$44^{\text {b }}$	$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{ClO}_{4}$	52.07	4.81	52.22	4.90
2-Chloro-3,4-dimethoxyphenyl	OMe	125-125.5 (0.12)	47^{6}	$\mathrm{C}_{11} \mathrm{H}_{3} \mathrm{ClO}_{4}$	54.00	5.36	54.21	5.39
2-Chloro-4,5-dimethoxyphenyl	OH	121-123	63^{b}	$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}_{4}$	52.07	4.81	52.18	4.98
2-Chloro-4,5-dimethoxyphenyl	OMe	111-111.5 (0.05)	$69^{\text {b }}$	$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClO}_{4}$	54.00	5.36	54.28	5.85
2-Chloro 4,5-dimethoxyphenyl	Cl	73.5-75	84	$\mathrm{C}_{10} \mathrm{H},{ }_{0} \mathrm{Cl}_{2} \mathrm{O}_{3}$	48.22	4.05	48.50	3.83
2-Methyl-3.4-dimethoxyphenyl	OH	109-110	66	$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4}$	62.84	6.71	62.80	6.83

${ }^{a}$ All acids were crystalized from benzene-petroleum ether (bp $60-70^{\circ}$), and the acid chloride from petroleum ether, ${ }^{b}$ Yields based on azlactone.
$162^{\circ}(3 \mathrm{~mm})$; $^{14 \mathrm{c}}$ 3,4-methylenedioxyphenyl-, $79,101-102^{\circ}$ (1 $\mathrm{mm}) 1^{14 \mathrm{e}}$ 3-methoxyphenyl-, $70,104-109^{\circ}(2 \mathrm{~mm}) .{ }^{14 \mathrm{f}}$

Acylation of Indoles via the Oddo Reaction. General Pro-cedure.-A solution of 0.05 mole of indole (or 5,6-methylenedioxyindole or 5 -bromoindole) in 25 ml of anhydrous benzene was added dropwise during 10 min to a vigorously stirred solution of 0.05 mole of phenylmagnesium bromide, prepared in the usual way, in 50 ml of anhydrous ether. The resulting mixture was refluxed for 2 hr , then cooled to -10° in a Dry Ice-methanol bath. A solution of $0.0 \overline{0}$ mole of the arylacetyl chloride in 20 ml of benzene was then added dropwise during 45 min while the temperature was maintained at -8 to -10°. The cooling bath was then removed, the mixture was stirred for another 30 min , and finally hydrolyzed by addition of $2 \overline{\mathrm{ml}}$ of 10% aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The resulting solid product was collected by filtration, washed several times with ether, and air dried. Further treatment of the crude product followed one of the three following procedures. Properties of the final pure products are summarized in Table I (3 -arylacetylindoles) and Table II (1,3-di(arylacety)indoles).
Method A. Direct Formation of a 3-Arylacetylindoie.-This situation occurred only in the case of 3 -(2 -methyl-3,4-dimethoxyphenylacetyl)indole (Ia), which was directly purified by recrystallization from 95% ethanol.
Method B. Predominant Formation of 1,3-Di(arylacetyl)in-doles.-The crude products were purified by recrystallization from 95% ethanol (except where otherwise noted) and had the properties collected in Table II. These pure diacyl compounds (II) were hydrolyzed as illustrated by the following explicit example.
3-(3,4-Dichlorophenylacetyl)indole (Ii).-One gram (0.0021 mole) of (IIi) was refluxed for 5 min with a solution of 5 ml of $10 \% \mathrm{NaOH}$ in $1 \overline{\mathrm{ml}}$ of 95% ethanol. The resulting solution was diluted with 20 ml of water and cooled. The precipitate was collected by filtration, washed with water, air dried, then recrystallized from 95% ethanol to yield $0.60 \mathrm{~g}(98 \%)$ of pure (Ii) (cf. Table I).

Method C. Formation of Gross Mixtures of Mono- and Di-acylindoles.-In these cases the crude products, although distinctly crystalline, did not yieid either pure 3-arylacetyl- or 1,3 -di(arylacetyl)indoles even after repeated recrystallization. Such mixtures were therefore directly hydrolyzed with aqueous alcoholic NaOH , as described under method B , to yield the pure 3 -arylacetylindoles.
Method D. Seka's Reaction.-The reactions of 2-methylindole with 3,4 -methylenedioxyphenyl-, ${ }^{15}$ 3,4-dimethylphenyl-, ${ }^{16}$
(15) W. Reeve and W. H. Earecksen. J. A m. Chem. Soc., 72. 3299 (1950).
(16) F. Benington, R. D. Morin, and L. C. Clark, J. Org. Chem., 25, 2066 (1960).

3,4-dichlorophenyl-, ${ }^{16}$ and 2,4-dichiorophenylacetonitriles ${ }^{17}$ in anhydrous ethereal HCl solution were all accomplished by essentiaily the same procedures previously reported. ${ }^{6}$

> (17) W. Reeve and P. E. Pickert, J. Am. Chem. Soc., 79, 1932 (1957).

Derivatives of 4-Phenyl- $\Delta^{\beta, \gamma}$-butenoides ${ }^{1}$

Price Truitt and Sharon G. Treitt

Department of Chemistry, North Texas State University, Denton, Texas 76203

Received March 22, 1966

In our efforts to prepare physiologically active compounds we have prepared a series of α-arylidene- γ-substituted $\Delta^{\beta, \gamma}$-butenolides ${ }^{2-6}$ (see Table I on following page).

These compounds were tested for antitumor, antischistosome, antiviral, and antibacterial activities. The lactones were inactive in these tests except that compounds 1,9, and 12, which contain the nitrogen mustard group, showed slight antileukemia activity. ${ }^{7}$

Experimental Section

The α-arylidene- γ-phenyl- $\Delta^{\beta, \gamma}$-butenolides were prepared by heating 0.05 mole of the appropriate β-aroylpropionic acid, $0.05 \overline{5}$ mole of aldehyde, 8.2 g of sodium acetate, and 16 ml of acetic anhydride on a hot plate until homogeneous. The heating was continued on a steam bath until crystals separated. The reaction mass was allowed to cool, filtered, washed with water and sodium bicarbonate, and recrystalized from ethanol.

[^0]| | | | | |
| :---: | :---: | :---: | :---: | :---: |
| Ni. | n_{1} | k | R. | $M_{1 \times(1)}$ |
| | 4-(1) | 11 | | 177-181 |
| 2 | 4-(1) | 11 | - | $\underline{-12-243}$ |
| ; | +-(1) | 11 | $3-$ - hhom, | $244-246$ |
| 4 | 4-C1 | II | 4-Mehom: | 2-5-299 |
| 5 | +-(1) | 11 | - -acetosy | 192-194 |
| (i) | $4-\mathrm{Cl}$ | 11 | 2,3-Dimethoxy | (17)-181) |
| $\overline{7}$ | +(1) | 11 | \%-Aretexy | (6) $) 171$ |
| | 4-(1) | 11 | 1. | 124-185 |
| 9 | 4-Ethoxy | II | $p-\left(\mathrm{CCHz}(\mathrm{CH}) \mathrm{S}_{2}\right.$ | 14!-14; |
| | 4-Fithox | 11 | \because-Chum | 1:36-1:7 |
| | f-Fithoxy | 11 | , | 107-16- |
| | --kthoxy | -Ethoxy | | 10.)-10- |
| | --rithaxy | -Ethax | t-Methoxy | 17\% |
| | 4-Methoxy | 11 | 2,\%-Dimethoxy | 16.9166 |
| | 4-Methoxy | II | 4-Dine thylaminn | 17-1\% |
| | 4-Methoxy | 11 | $\begin{aligned} & 3 \text { Whexy-4- } \\ & \text { wetwxy } \end{aligned}$ | 1:35-1:\% |
| | 4-Methoxy | II | 1. | 175-176 |
| "Phenyl replaced hy :3-pridyl. "Pheny repheed by L-furyl. | | | | |
| Synthesis of $1,1^{\prime}$-Trimethylenc-4, 4^{\prime}-Substituted | | | | |
| Pyridinium and 1,3'-Halopropyl-4-Substituted | | | | |
| Pyridinium Compounds ${ }^{1}$ | | | | |

(dinton N. Cobmer: and Jambe L. Wiy
Department of Pharmacologn, Marquette Unimersity, School of Mcticinc, Milwanker, Wistonsin \quad-3.2.3.

Recewed Ontober 29, 1:16:
Sarions meleophilio agents, particularly oximes, have been employed in antagonizing the highly toxic anticholinesterase alkyi phosphates, e.g., chemical warfare agents and insecticides. Onc of the most effective agents for antagonizing alkyl phosphate intoxication is 1,1 'trimethylenebis(4 -aldoximinopyridininm) dibromide. ${ }^{3,4}$ The metabolic disposition of this antagonist is being investigated in our laboratory both in vitro ${ }^{5}$ and in vivo. ${ }^{6}$ The report herein describes the synthesis of some known or potential biological metabolites of this antagonist and their intermediates, which are being employed to facilitate the investigation of the biochemical transfornation of $1,1^{\prime}$-(rimethylene-bis(4-aldoxiniinopyridinium) dibromide.

Experimental Section ${ }^{-}$

General.--All reactions were performed under anhydrous conditions and in stoppered flasks protected from light. It should

[^1]be stressed that the exano derivatives of types I and II are extrenely labile, especially if anhydrous conditions are not carefully maintained. Fonicotinic acid was obtained from Eastnan (Organic Chemicals. Pyridine-4-aldoxime, 4-cyanopyidine, 1,3-diiodopropane, and 1,3-dibromopropane were purchased from the Aldrich Chemieal Co. Care should be exercised in the use of 4 -cyanopyridine due to its high vapor pressure and toxic propertie:. All other reagents and starting materials were of the highest grade and purity commercially available.

The AIenschutkin reaction has been employed in the synthesin of these quaternary pyridinium compounds. ${ }^{8}$ Minor modification of this reaction was utilized in the synthesis of this antagonist and in the preparation of the compounds presently described. The 4 -aldoximino and the 4 -cyano derivatives of type I were synthesized by treating the corresponding 1,3 -dihalopropane with the substituted pyridine derivative. The 4 -pyridone of types I and II was prepared by the alkaline hydrolysis of the corresponding 4 -cyan derivative. ${ }^{9}$ Bisquaternary derivatives of tape II were prepared by treating type I with the appropriate monosinbstituted pyridine, with the expption of the biscyano and the pyridone derivatives. The biseyano was prepared by the same procedure as for type I derivatives.
1.3'-Bromopropyl-4-aidoximinopyridinīum Bromide (I).-A solution of 12.21 g (0.1 mole) of pyridine-4-aldoxime and 121 g (0.6 mols) of 1,3 -dibromopropane in 730 ml of anhydrous hitrobenzene was allowed to stand at room temperature for 90 days. The yellow crystals which formed were collected, washed with ether, and dried in tucmo: vield 31.8 g (99%) of product, mp $158-189^{\circ}$ der. Recrystallization from methanol yielded as yellow needies, $30.2 \mathrm{~g}\left(94^{\circ}\right.$,) of the (quaternary salt, mp 189-190 0° des. Compounds II and III were made with appropriate modification of the general nethod deseribed above. The remult are listed in Table I.
1,3'-Bromopropyl-4-pyridone Picrate (IV) --A solution of 6.35 g (0.021 mole) of 1,3 'hromopropyl-4-cyanopyridinium bromide and 20 ml of 1.0 N NaOH in 35 ml of distilled water was allowed to stand at $0-5^{\circ}$ for 10 min, was adjusted to pH 9.0 with 1.0 N HCl , and was extracted with 1 I . of benzene in a liquid-liquid extractor for 24 hr . The benzene extract was dried (MgSO_{4}) and concentrated in varuo. The yeliow oil was crystalized as the picrate salt from benzene.
(8) E. N. Shaw, "Pricine anl lits Detivatives, Pari H," Momograplis from the series "The Clemistry of Heterocyclic Compounds," t. Weiss-
 (9) E. MI Kosower, "Mholemlar Biuchemistry," NoGraw-Ibll liook Co., lae. Now York, N. Y.. 1962, p1:0.

[^0]: (1) Supported by a grant (Cy -03908) from the National Institutes of Health and a Faculty grant from North Texas State Uaiversity,
 (2) W. Borsche, Ber., 47, 1107, 2718 (1914).
 (3) R. Filler and L. M. Hebron, J. Am. Chem. Soc., 81, 391 (1959).
 (4) M. M. Shalı and N. L. Phalniker, J. Univ. Bombay, 13, 22 (1944); Chem. Abstr., 39, 2289 (1945).
 (5) V. K. Paranijpe, N. L. Phalniker. and B. U. Bhide. ibid., 17A, 69 (1949) : Chem. Abstr., 44, 1480c (1950).
 (6) C. Hana and F. W. Schueler, J. Am. Chem. Soc., 75, 741 (1953).
 (7) The antileukemia tests were arranged through CCNSC and were carried out at the Department of Medicine, University of Miami, Niami, Fla.

[^1]: Gratits N13 04541 and 111110109.
 (2) These data are from a thesis to be presentel hy C. N. Corter in partial fulfillinent of the recuiremente for a $1 P$, D. clegret in plarmacolory.
 (3) E. J. Puaiomek, B. F. Haekley, Jr., and G. M. Steintherg, J. Oiv. (hem., 23. 714 (1957).
 (4) F. O. Hobbignr, D. G. O'sullivan, and P. W. Sudler, Nature, 182, 1498 (1958).
 (a) C. N. Corder and J. J.. Way, submitterl for publication.
 (6) P. M. Miranda and J. L. Way, sulmitted for publication.
 (i) Analyses were performed by Weiler and strauss, Oxford, Fingland, and by Huffinan Laboratories, Inc.. Wheatrilge. Colo. All melting points were cletermined with a Thomas-Hower apparaths and are corrected. C-ltraviolet spectra were measired in a Beckinan DB and/or Beckman DU spectrophotometer using distilled water as the sulvent. Infrared spectril were determined with a Beckman $1 R-\overline{5}$ s shectrophotometer using either FBr pellet, or Nujol thall. Legend for interpretations of principle absorbance hatuls are: s, strmix; 1, medinn: w, wak. A Calin Electrotalence was used to weigh spectral samoles.

